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Reactivity of a Trimethylstannyl Molybdenum Complex in Mesoporous MCM-41 
Christian Huber, Karin Moller and Thomas Bein* 
Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA 

A highly thermostable tin-molybdenum complex is encapsulated into the hexagonal mesoporous channel host 
MCM-41 and thermally transformed into supported metal clusters. 

The recent discovery of a new class of ordered mesoporous 
materials' with channel diameters between about 20 and 100 
8, has opened up new opportunities for the design of hybrid 
catalysts. The immobilization of transition-metal catalysts on 
solid supports has been the focus of many research efforts.2-6 
Key challenges in the design of these catalysts include (i) 
control over the species that is actually immobilized, and (ii) 
sufficient stability against deactivation and leaching. The 
novel mesoporous MCM-41 hosts are prepared in liquid 
crystalline phases where combinations of amphiphile-metal- 
0x0 systems order in channel or  layer structures. In the case of 
aluminosiiicate MCM-41, the pore system obtained after 
calcination presents well-defined hexagonal walls with termi- 
nal hydroxyl groups at 3745 cm-1 (in vacuum). Surface 
reactions with organometallic compounds should therefore 
produce well-defined species, in contrast to the situation on 
some amorphous supports. The enormous pore sizes of the 
MCM-41 family offer new opportunities for the encapsulation 
of large catalyst species and for the catalytic conversion of 
substrates much larger than in common zeolites. 

We have recently developed a concept for stabilizing 
low-valent transition-metal moieties [such as CI2(THF)Ge- 
M O ( C O ) ~ ~  or  Me3SnMn(CO)S]g in large-pore zeolites, by 
using bimetallic complexes where the second, oxophilic 
main-group element serves to attach the complex to the 
internal zeolite cage surface. This communication describes 
the attachment of the bimetallic complex Me3SnMo(C0)3(~- 
CSHs) into the hexagonal channels of MCM-41. This system 
also provides a convenient precursor for highly dispersed 
SnMo clusters made by thermolysis of the encapsulated 
complex. 

All manipulations were carried out under nitrogen atmo- 
sphere, in thoroughly dried solvents, o r  high vacuum. The 
precursor M ~ ~ S ~ M O ( C O ) ~ ( ~ - C S H ~ )  (mp 97-99 "C) was 
synthesized from the reaction between N ~ [ M o ( C O ) ~ ( ~ -  
CsH5)] and Me3SnCI following a modified reported method.9 
The hexagonal channel host MCM-41 (unit cell size, 4.0 nm; 
channel diameter, ca. 3.0 nm) was synthesized using 
C16H33NMe30H according to published procedures.1 MCM- 
41 was degassed by calcination in oxygen for 4 h at 100 "C and 
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Fig. 1 In situ FTIR spectra of Me3SnMo(C0)3(q-CSH5) in the 
MCM-41 host under vacuum: (a) 30, (b) 290, (c) 320, (d) 340, (e) 360, 
U, 370, (g )  390, (h) 400 "C. Heating rate 2 "C min-l Peaks observed at 
2019, 1948, 1921 and 1422 cm-l. 

for 8 h at 540 "C, followed by evacuation at 400 "C for 6 h (10-5 
Torr; heating rate 1 "C min-1). The host was loaded with 1.5 
mmol of Me3SnMo(C0)3(q-C5HS) per g of host in 50 ml of dry 
hexane by stirring the slurry for 18 h, followed by washing and 
drying under vacuum. For thermal stability studies, 0.5 g 
batches of loaded host where heated in a tube furnace under 
10-5 Torr at the desired temperatures (heating rate 1 "C 
min-1, isothermal for 6 h). EXAFS measurements at the Mo 
K-edge (20000 eV) and the Sn K-edge (29200 eV) were 
carried out at NSLS (Brookhaven National Laboratories) at 
beamline X-11A with a stored energy of 2.5 GeV and ring 
currents between 100-200 mA, at about 100 K in transmission 
using a double-crystal Si(311) monochromator. 

If the carbonyl stretching region of the precursor (in 
hexane: 2001, 1927, and 1904 cm-1) is compared with that of 
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Fig. 2 Fourier-transformed EXAFS data of Me3SnMo(CO)3(q-C5H5) 
in MCM-42 at different treatment temperatures: (a) Sn-edge, 30 "C; 
(b) Sn-edge, 300 "C 
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Fig. 3 Proposed intrazeolite chemistry of Me$hMo(C0)3(q-C5HS) in 
the MCM-41 host (schematic) 

channel attachment of the bimetallic species via removal of 
some of the methyl ligands already at room temp. The 
attached complex is extremely stable and starts to dissociate 
C O  only above ca. 200 "C, and converts into sub-nanometer 
size Sn-Mo metal clusters at about 300 "C, as depicted in Fig. 
3. Initial catalytic studies of this system show high activity of 
the intact, attached bimetallic complex for olefin hydrogena- 
tion. 

The striking thermal stability of these encapsulated organ- 
ometallic and metal cluster species permits further studies of 
their chemical reactivity and catalytic activity. 
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the complex in MCM-41 (2019, 1948, and 1921 cm-1) only 
moderate changes are observed (in situ FTIR spectroscopy; 
Fig. 1). This shows that there are no significant surface-CO 
interactions present such as those observed with carbonyl 
complexes in Na-containing zeolites (e.g. ref. 8). The hydroxyl 
region (monitored in the first overtone) shows a significant 
reduction of the intensity of the band at 7328 cm-1, supporting 
the idea that the trimethyl tin moiety reacts with the surface. 

In situ FTJR-TPD experiments with the SnMo complex in 
MCM-41 show the striking stability of the above-mentioned 
triplet of C O  stretching bands when heating up to about 290 "C 
(Fig. 1). Only above 320 "C is a slow decrease in intensity 
visible, and the subsequent destruction of the C O  species 
between 320 and 400 "C occurs without any significant change 
in band position, relative intensities, and without formation of 
intermediates. A slight increase of C O  evolution becomes 
visible above about 200 "C, with a maximum as high as 350 "C 
(TPD-MS spectra). Methane evolution with a maximum at 
360 "C is also observed. 

EXAFS data show the following: The bimetallic complex 
remains intact at the Mo moiety when adsorbed into the dry 
MCM host (Mo-CO, 3.4 ligands at 3.15 A). The Mo-edge 
shape is similar to that of the precursor. The tin coordination 
s here is consistent with three C/O groups [Sn-C/03.2 at 2.08 R ; Fig. 2(a)]. This distance is significantly shorter than that of 
the precursor (2.15 A), indicating surface attachment with 
oxygen substitution at tin. This is confirmed by the Sn-edge 
shape that shows loss of Sn-C features. The second tin shell is 
assigned to Sn-Mo backscattering (reliable fits are difficult 
because of overlapping shells). 

At 300 "C,? the Sn-e$ge EXAFS shows coordination to 
oxygen (3.5 0 at 2.08 A),  and a significant increase of the 
second-shell amplitude, due to metal backscattering [Fig. 
2(b)]. These changes can be compared with a remarkable 
increase of absorption in the near IR spectra, and indicate the 
formation of metallic molybdenum-tin clusters in the MCM 
host after thermal decomposition of the precursor complex. 

In summary, the reaction of Me3SnMo(C0)3(q-CSHS) with 
the walls of hexagonal mesoporous MCM-41 leads to intra- 

Footnote 
These temperatures can not be directly compared with the in situ IR 

measurements because batch processes take much longer than 
desorption from thin films. 
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